FUZZY IMAGE REGIONS FOR QUANTITATIVE LAND COVER ANALYSIS
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ABSTRACT:

Fuzzy Image Regions were proposed recently as an alteer@®OBIA method for conducting qualitative land cover dlassion.
In this paper, these fuzzy segments are applied for estmafi quantitative (i.e. compositional) land cover. The Imoet comprises
three main stages: (i) fuzzy segmentation to create segnwétit indeterminate boundaries and uncertain thematozation; (ii)
feature analysis to evaluate contextual properties ofyfimage regions; and (iii) nal regression to estimate cosiponal land cover.
The method is implemented using advanced machine leareaipigues and tested in a rapidly urbanizing area usingdaandulti-
spectral imagery. Experimental results suggest that thbadeproduces accurate sub-pixel characterization of tawer classes.
Thus, the proposed method is potentially useful for brigdhre gap between the traditional quantitative and qua@gterspectives of
remote sensing image analysis.

1 INTRODUCTION very accurate results but they are labour intensive and ¢ione
suming methods (Lizarazo, 2010).

Signi cant research in geographic object-based imageyaisl . . .
(GEOBIA) aims to improve qualitative classi cation of retedy This paper explore§ th_e potentlgl of _Fuzzy Image Regionétbt
sensed imagery. Such a trend can be noticed in recent pee‘f'RME) for quantitative classi cation of land cover. F'F‘“F" .
reviewed GEOBIA related journals (Hay and Blaschke, 2010)as recently proposed as a new GEOBIA method for qualitative
A large percentage of most recent articles focus on evalgatil- classi (_:atlon of L_eran 'af_‘d cover _(leara_zo_and Bar_ros, @01
vantages of GEOBIA classi cations over traditional pixmsed ngzy Image regions are image objects with |nqeterm|naugdbo
classi cations, see, for example, (Johansen et al., 2010, & aries and uncertain thematic content. These image regems r
al., 2010, Lizarazo and Barros, 2010). GEOBIA classi caio '€Senta much more general concept than the crisp imagetobjec
are esentially qualitative classi cations of land covehigh allo- .tradmolnally useq in G.EOBIA' In th'.s paper, the FIRME amb
cate discrete labels to pixels. This classi cation type tiamion- 'S @Pplied for estimation of impervious surface areas (ISA)s
strated to be useful in different applications inciudingrtratic works aims to determine whether the inclusion of severdiapa

mapping and change detection in rural and urban envirorsnenf"md spectral .prop.erties of fuzzy image regions contribtatés-
(Jensen, 2005). prove the estimation of ISA values.

In contrast to qualitative land cover classi cation, whadlocates 2 DATA

discrete class labels to pixels, a quantitative land colessée

cation assigns continuous values expressing class coiti@os  The study area is a small watershed located in Montgomemigou
percentages (Clapham, 2005). As quantitative classocaties-  Maryland, USA. Impervious surface mapping is based on two
timate sub-pixel land cover classes, they may be, in mangscas Landsat Thematic Mapper (TM) images from 1990 and 2000 re-
much more useful than qualitative classi cations. In aidtita  spectively: Landsat 5-TM of 3 May 1990, and Landsat 5-TM of
quantitative classi cation seems to be an appealing wagpoe- 8 May 2000. These Landsat images correspond to the world ref-
sent the spectral hetereogeneity within land cover clgzgsent  erence system (WRS) path 15, row 33. These images, available
in imagery at several spatial resolutions (Fisher and A2@07).  from the USGS Earth Resources Observation and SciencerCente

Examples of successful application of quantitative claatibn  website (http://glovis.usgs.gov), include seven spébaads as
of land cover include urbanization monitoring in urban aob-s  follows:

urban watersheds (Clapham, 2005, Goetz and Jantz, 2006).

. . - _Band 1: 450 - 520 nm (Blue).
Impervious surfaces is an indicator of the degree of urlzaniz g5nd 2: 520 - 600 nm (Green).

tion as well as a major indicator of environmental qualityriéld Band 3: 630 - 690 nm (Red).

and Gibbons, 1996). Impervious surfaces are anthropodeaic  gand 4: 760 - 900 nm (Near infrared).

tures through which water cannot in Itrate into the soilchlas  gand 5: 1550 - 1750 nm (Mid-Infrared).

roads, driveways, sidewalks, parking lots, and rooftoper® pgand 6: 10400 - 12500 nm (Thermal infrared).

2007). Digital extraction of impervious surfaces from medi 554 7: 2080 - 2350 nm (Mid-infrared).

spatial resolution images has been demonstrated dif aust &

the mixed pixel problem (Clapham, 2005). Current approache

for impervious surfaces mapping make use of automated mask-

ing, visual interpretation and pixel-based regressiomrilyns  Of the two Landsat TM images used, the thermal band (band 6)
(Clapham, 2005, Jantz et al., 2005). Such approaches produgvas excluded prior to impervious surface estimation dudso i



(b)

Figure 1: True color composition of two dates of Landsat iesagf the study area: (a) RGB321 of Landsat-TM 1990, and (lB3&%
of Landsat-TM 2000.

(CY (©

Figure 2: Impervious surface area (ISA) maps for the studg aroduced by WHRC: (a) ISA 1990, (b) ISA 2000, (c) Urban teve
ment between 1990 and 2000. These maps are used in thismegpeds ground reference.

coarse spatial resolution. The six remaining bands areiggdv et al., 2005). These thematic maps represent ve land cater c
in a UTM WGS 84 projection with pixel size of 28.5 meters at gories: water, urban, grass, trees and bare soil. In thitysiwth
50 meters RMSE absolute positional accuracy. The experimerlSA and qualitative thematic maps were used as ground refer-
tal area covers 655 x 560 pixels (aprox. 297keB82) over the  ence for training sample collection and accuracy evalnafihe
towns of Germantown and Gaithersburg. Figures 1 (a) and (bjjualitative land cover maps are used here to get the labeled t
show true colour compositions of theses images which ard-Lan ing samples required to produce one fuzzy image region per la
sat L1G products, i.e. radiometrically and geometrically-c  cover class. Then, the ISA maps are used to get the quarditati
rected images with radiance pixel values scaled to byteegalu training samples required to infer quantitative impergisurface
Due to brightness differences, the increase that occurretti  area values.

veloped land between the two dates is not completely apparen

(urbanization correspond roughly to the white and grey wad

areas). The study area was selected because of the avgilabil 3 METHODS
of very accurate information on impervious surfaces fortiime
period under consideration (Jantz et al., 2005). Figure 3 shows the image analysis work ow for estimating im-

pervious surface area using the FIRME approach. Similarye
The impervious surface information was available from an ex procedure proposed for qualitative classi cation (Lizavaand
tensive study on urbanization in the Chesapeake Bay Waigrsh Barros, 2010), it involves three main stages: (i) fuzzy segm
where (Jantz et al., 2005) obtained accurate imperviodacr tation; (ii) feature analysis; and (iii) defuzzi cation.€. regres-
areas (ISA) maps at 30 m spatial resolution for 1990 and 2000sion). The main difference here is that, in the case of qtativé
These maps represent impervious surfaces (roofs, steidés,  classi cation, the nal result is a continuous value reeting
walks, etc) as aontinuousvariable, with values ranging from compositional land cover (i.e. imperviousness) rathen thalis-
0% (no impervious) to 100% (completely impervious). Thelgtu crete land cover class label. Therefore, the last stagetigno
also produced an accurate analysis of change, using bath autclassi cation task but aregressiontask. For a detailed explana-
mated and manual (visual-screening) techniques, and also b tion of the different types of fuzzy image regions, a revidhe
soil areas masking. FIRME approach (Lizarazo and Barros, 2010) is suggested.

These impervious surface area (ISA) maps are publicly -avail3.1 FIRME Segmentation

able from the Woods Hole Research Center (WHRC). These ISA

maps, along the image corresponding to the amount and loc&8efore starting this stage the two Landsat-TM images were no
tion of change in the built environment, between 1990 and200 malized radiometrically to reduce the effect of brightnditer-
are shown in Figure 2. In addition to this, qualitative lamy@&r  ences. For such a task, thistogram matchingechnique (Jensen,
maps for the same dates are available from the mid-Atlargic R 2005) was used tmatchthe intensities of the six channels of the
gional Earth Science Applications Center (MA-RESAC) (2ant 2000 scene to the 'standard' 1990 scene.
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Figure 3: Sequence of stages used for quantitative clessbi in the FIRME approach: (1) Fuzzy segmentation, (2JireaAnalysis,
and (3) Regression.



For thefuzzy segmentaticsiage, a supervised Generalized Addi- 3.2 Feature Analysis

tive Model (GAM) regression technique was used. A genezdliz

additive model (GAM) is a special case of a generalized lineaThe feature analysistage aims to identify spatial and spectral
model (GLM) in which part of the linear predictor is speci @  properties of fuzzy image regions. Contextual relatiopshie-
terms of a sum of smooth functions of predictor variablese Th tween fuzzy image regions can be measured to uncover poten-
exact parametric form of these functions is unknown as isléhe tial underlying structural information. In addition, geetric and
gree of smoothness appropriate for each of them (Wood, 2006}§pectral properties of fuzzy image regions can providescioe
While general linear models emphasize the estimation ded-in  resolve spectral confusion between land cover classes.

ence for the model parameters, GAM focuses on exploring data

non-parametrically. The strength of GAM is its ability toale Contextual relationships were evaluated using the confusi-
with highly non-linear and non-monotonic relationshipsieen  dex (Cl) (Burrough et al., 1997):

the response variable and a set of explanatory variablestifHzt

al., 2009). In general, a GAM model can be expressed as: Clh=1 maxi (max  1)i ®)
X where max and (max 1)i are, respectively, the rst and sec-
Y =S+ Sk(Xk)+ « 1) ond largest membership value of & pixel. TheCl measures

the overlapping of fuzzy classes at any point and providggfm

for further investigating the sites with high membershifuesa to
more than one class (Bragato, 200€). values are in the range
[0; 1], values closer to 1 describe zones where overlapping is crit
ical.

whereSy is the interceptSy (X k) is a non-parametric smoothing
function for thek™ independent variabl¥ (k = 1;2;:::; p), and

« are independent and identically distributed (i.i.tN)(O; ?2)
random variables. The only underlying assumption is that th

smoothing functions in GAM are additive. In addition, the information entropy (H) was evaluated athea

GAM models have been applied in remote sensing studiescelat pixel of the fuzzy image regions as follows (Gonzalez, 2008)
to stochastic simulation of land cover change (Brown e28i02) 0

and model-assisted estimation of forest resources (Opsetrak, _ ' ‘
2007). H = p(xi) log p(xi) 4)

i=1
The supervised GAM regression model was tted udargd cover
membershipgs dependent (response) variable andnsismal-
izedbands as predictor variables. The GAM technique was ap
plied to create individual regression models from categotrain-

where p(xi) is the probability for each digital number (or in-
tensity level) in the image under consideration (obtairmethfa
histogram of the image intensities), alug) is the natural loga-

ing samples randomly sampled from the available land coegsn rithm W't_h basee = _2 1718282 Then, _the ent!'opy of the full get
For creating each regression model, the GAM technique was ap?f fuzzy image regions was'summarlzed using the entropyinde
plied using the one-against-all technique (Hastie et &Q92 (ENTRO) (Gonzalez, 2008):

A random sample of 1000 pixels was used to obtain training NG

pixels for each land cover. Training samples were assigired e ENTRO = H)=log(128)(5)

ther 100 (full membership) o0 (null membership) to each land
cover. Once individual predictions were undertaken formgve
land cover, a sum-to-one constraint was applied to memipersh wherem is the number of fuzzy image regions (or land cover
values to interpret fuzzy image regions as compositiorsisgls. ~ classes of interest).

c=1

This stage produced ve fuzzy-fuzzy image regionsater, ur- Mean values of spectral bands TM-1, TM-3 and TM-4 within
ban grass treesandsoil, which are shown in Figure 4. Then, crisp image regions were evaluated as spectral indicesllfia
these fuzzy-fuzzy image regions were transformed inteethesv  geometry attribute, representing the perimeter area waical-
images: (i) crisp image regions, (i) crisp-fuzzy imageio®g,  culated at every crisp image region. The feature analyaigest
and (iii) fuzzy-crisp image regions (using membership galof  therefore outputs three contextual indices per date, tinéueo
0.60 as threshold). These image regions are depicted imeFigu  sion index (Cl), the entropy index (ENTRO), and the shapesind

The crisp imageC was obtained using a logical union operator (SHAPE), and two spectral indices, MEAN B1 and MEAN-B2.
P 9 9 9 P These indices are shown in Figures 6 and 7.

referred to as the fuzzy t-conorm MAX operator (Ross, 2004),

and de ned as follows: 3.3 Regression

C= iU i2:::U ic = max( i1; i2;:005 is) (2 : L : i
For the nal regressionstage, the estimation of impervious sur-
wheremax () indicates the largest membership value of e face area within individual pixels was conducted usingtétan
pixel or neighborhood. Then, contiguous pixels belongmthe  Predictors as follows:
same class were clumped and sieved.

The crisp-fuzzy (CF) image was obtained by keeping the bound 1. fuzzy image regions water
ary of crisp image regions and replacing their interior esl(.e.

the largest membership value) with the original membersaip 2. fuzzy image region urban
ues at each fuzzy image region. Finally, the fuzzy-crip ienag
(FC) was created by the union of a crisp interior (de ned by
using the 0.60 membership value as threshold) and the condi-
tional boundary represented by the confusion index (refeto

as Cl, and explained in the next section) using the folloveitage- 5. crisp image regions,
ment: IFMAX > =0:60, THENFC = MAX , OTHERWISE

FC = ClI. 6. crisp-fuzzy image regions,

3. fuzzy image region grass

4. fuzzy image region trees
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Figure 4: Fuzzy-fuzzy image regions obtained in the fuzation stage for the 1990 and 2000 dates. From top to bottorerywaban,
grass, trees and bare soil.
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Figure 5: Image regions derived in the fuzzi cation stagetfe 1990 and 2000 dates. From top to botton: crisp-fuzzgéenagions,
crisp image regions, and fuzzy-crisp image regions witeghold at 0.60 membership.
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Figure 6: Contextual and spatial indices obtained from yurzage regions for the 1990 and 2000 dates: (a) confusioexingb)
entropy, and (c) shape index.
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Figure 7: Spectral indices obtained from crisp image regfonthe 1990 and 2000 dates: (a) mean of TM-1, (b) mean of T,M&i
(c) mean of TM-4.



7. confusion index, estimation was conducted based on the predicted impersigus
faces, using a change matrix (as suggested by (Fisher 20@6)

8. entropy index, for per-pixel fuzzy change analysis) to accommodate zohB®o

ChangeandChange The diagonal cells of the change matrix in-

dicatingno changehas occurred in a cover claSs between time

t1 and timet2 were obtained using the equation (Fisher et al.,

2006):

9. fuzzy crisp region at 60% threshold,
10. mean of band TM-4 within crisp image regions,
11. mean of band TM-3 within crisp image regions,
12. mean of band TM-1 within crisp image regions, and (Cj nochange 1) = Min ( (Cjay); (Cjpezr)) (6)

13. shape index of crisp image regions. wheremin indicates the minimum operator (intersection) be-

tween fuzzy sets, i.e. the minimum value of the membership

A random forest (RF) technique was applied to create the imyalues (Cju) to classC; for a given timet1 ort2.

pervious regression model from training samples, this isiegg i the total area of clags which is gained, is given by the
training samples extracted from the ISA maps. A RF is aregres, aas which are not members of cl§€s) at timet 1, denoted as
sor thqt bU|Id§ not one but .hundredsf of decision trees and.com (: Cjiyy) and are members of claés; ) at timet2, denoted as
bines its decisions using simple voting or advanced tectesiq (Ci1z1)- Gain was calculated using the equation (Fisher et al.,
based on consensus theory (Hastie et al., 2009). The présnisegog).-
that combining many trees is often more accurate than iglyin

on only one tree. A random forest is a collection of classi ca

tion and regressionn trees (CART) following speci ¢ rules:f ) = (G + ‘

(i) tree growing, (i) tree combination, (iii) self-testinand (iv) (Citgan 1) = Max(0; ¢ G+ (Cipa) - D (1)
post-processing. Each tree is grown at least partiallyradaen: o ) )

randomness is injected by growing each tree on a differemt ra Wheremax indicates the maximum operator (union) between
dom subsample of the training data. This technique, useful tfuzzy_sets, i.e. the maximum value of each membership value
create new training sets, is referred to as the bagging igobn {0 @ given class (C;).

(or bootstrap aggregating). Each tree is grown on about 6% o

C e ; Loss the total area of clagswhich is lost, is given by the areas
the original training data (due to the bootstrap samplirngess). X .
Thus, the 37% of the training data is available to test any sinWNich are members of clag€; ) at timet1, denoted as (C; 1),

gle tree. This left out data is the ‘out of bag' (OOB) which al- and are not members of clas; ) attimet2, denoted as(: C; ).
lows calibration of the performance of each tree. RF have bee-0SS Was calculated using the equation (Fisher et al., 2006)
explored for per-pixel land cover classi cation and expgehtal
results suggest it is computationally more e cient and naareu-
rate than other methods such as arti cial neural networksNA
(Pal and Mather, 2003, Gislason et al., 2006).

(Citioss1) = max(0; (Cipgy)+ ( Cjpzg) 1) (8)

The off-diagonal cells representing change in the changebma
The RF technique was selected due to its good performance favere calculated as the intersection of the gain in cfassand
regression tasks in remote sensing (Walton, 2008). Fotingea the loss in clas€x over the intervat1 to t2 using the equation
the regression model, the RF settings were setup using ltlefayFisher et al., 2006):
parameters as follows:

C; = min( (Cjgain); (C 9
number oftrees:SOO, ( j [change ]) ( ( J[gam]) ( k[Ioss])) ()

number of variables to try at every split = 3. All the processes for quantitative classi cation were igpented
by usingR (Team, 2008) andBAGAGIS (). Besides theR
base package, the following libraries were used to deveiep t
As a nal step, an evaluation of the accuracy of impervious su method: rgdal, sp, spatstats, maptools, RSAGA , gam and
face mapping was conducted using the ground reference 8nage-andomF orest .
For such a purpose the original ISA 1990 and 2000 maps (and
the urban development map), produced by WHRC at 30 m spa-
tial resolution, were subset and resampled to 28.5 metenatch 4 RESULTS
the window and pixel size of the Landsat-TM images of 28.5 m.
While this resampling degrades the quality of ground refeee  Figures 8 (a) and (b) show the impervious surface areas (ISA)
data, it was considered a more preferable choice than coagse maps in 1990 and 2000 as predicted using the FIRME approach
the pixel size of the Landsat images. with a random sample of 2000 pixels which represent 0.54 % of
the study area.
Direct comparison between the predicted and the ground-refe
ence ISA was conducted using the Pearson's correlation-coef The Pearson's correlation coef cient (Hall, 1979) betwdbn
cient (Hall, 1979). Area estimation of impervious surfages  predicted ISA images and the ground reference images, shown
given image was calculated by taking the sum of all pixel mem-n Figures 8 (c) and (d), ar@:76 and0:81 respectively. It is a
bership values for the image under consideration (Fishat.et good approximation to the real impervious surface, and mino
2006). misprediction problems are detected only after a carefsiali
assessment. As Table 1 shows, GAM-RF based fuzzy segmenta-
Once the impervious surface areas were estimated, the-subg#n overestimates impervious surface by 7.3% and 6.1%etesp
quent task to be conducted was change analysissandGain tively. Table 1 also shows that the correlation coef cieatween
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Figure 8: Impervious surface area (ISA) maps for the stuéya arsing: (a) FIRME method 1990, (b) FIRME method 2000, (c)
Reference data 1990, (d) Reference data 2000, (e) DIRECHaahd990, and (f) DIRECT method 2000.



the ISA change predicted by the FIRME method and the actuafjood for a range of environmental studies. The proposedadeth
change i0:49. The fuzzy segmentation method overestimatesmay be used as a rapid means for quantitative classi catimh a
ISA change by 10.13%. change estimation. However, additional re ning of resuitsng

) ) ) o ) ground data may be necessary for resolving eventual inaccur
As this study aimed at analyzing the contribution of fuzzyge cjes.

region to increasing the accuracy of the ISA estimation rectli

regression was tested. A direct regression uses the SVM teclffor comparison purposes, an additional test was conductbdbi
nique for estimation of impervious surface area valuesctlire experiment to estimate how sensitive the fuzzy segmentatie
from the normalized spectral bands. In this option, theyiseg-  proach is to the algorithm used for the fuzzi cation, andpes
mentation and feature analysis stages are omitted, andsthe e tively, defuzzi cation stage. In the test, the same procedex-
mation relies only on a reliable quantitative training séenpnd  plained earlier was applied but using the support vectorhinac
on the predictive power of SVM. Figures 8 (e) and (f) show the(SVM) technique (i.e. SVM was applied for both fuzzi cation
ISA maps obtained using direct regression (DIRECT). In Fégu and defuzzi cation) instead of the GAM-RF combination.

8 red coloured circles at each ISA map highlight zones of ma-

jor misprediction where bare soil zones are taken as impasvi SVM is a widely used machine learning method for per-pixel im
surfaces. Table 1 also presents the results obtained usngj+ age classi cation (Foody and Mathur, 2004, Huang et al.,2200
rect regression option. It is apparent that the fuzzy se¢mien  Zhu and Blumberg, 2002). SVM transforms the input data set
method outperforms the DIRECT method. Note that, for indi-into a higher-dimensional space using special functionkeda
vidual dates, the area error using the FIRME method is about 8ernels. SVM uses thstructural risk minimisatio(SRM) prin-
times lower than the area error using the DIRECT method. Wittciple to nd a separating hyperplane which minimizes the giar
regard to change in ISA values, the FIRME METHOD is aboutbetween two classes (Duda et al., 2001).

three times more accurate than the DIRECT method. )
The SVM approach for solving the two classes problem can be

Figure 9 (a) shows the predicted change on impervious ®irfacextended to multiclassi cation tasks (Duda et al., 2001)ori&4
area (ISA) values from 1990 to 2000 using the FIRME methodover, the SVM technique can be also applied to regressido-pro
with training sample size of 2000 pixels. Figure 9 (b) shohes t lems. In SVM regression, the goal is to nd a functibx) that
urban development reference data (Jantz et al., 2005).r&=gu has at most a given deviation, referred to afom the actually
shows that, using the proposed method, a general overdistiima obtained targetg; for all the training data, and at the same time
occurs over the whole study area. As Table 1 shows, the FIRMES as at as possible. In other words, errors, i.e. the differes
method overestimates urban development surface by 13%. betweeny; andf (x), are not important as long as they are less

than , but will not be accepted if they are larger than this (Smola
Table 2 shows, on the other hand, the relative importancadfe and Scholkopf, 2003).

predictor variable to create the Random Forest (RF) reigmess

model for estimating impervious surface at the nal regi@ss Kernel functions commonly used in SVM are: (i) polynomidi, (
stage. Although RF needs manual parameterisation, itdtsesu radial basis function, and (iii) sigmoid. SVM requires osiyall

do not change too much depending on the values assigned to th&ining samples to tthe classi cation or regression mbdsso,
number of trees or on the number of variables tried at evdity sp  while SVM parameterisation is considered to be a complaxeiss
The importance of predictor variables in RF is reportedgigie it can be solved using automatic procedures (Smola and Safol
IncMSEvalue. This means that, for each tree, the prediction ac2003).

curacy is calculatewith andwithouteach predictor variable us-

ing themean squared errofThen, the differences in accuracy are Table 3 shows the performance of the method when applying
averaged over all trees and normalized by the standard dfror SVM, using a radial basis function and an automated paramete
the standard error is equal €ofor a given variable, the division isation strategy (Lizarazo, 2008), in order to estimateanita-

is not done but the reported valueds In short, a low value of tion changes. It can be noted that area error values andaorre
IncMSEmeans that the corresponding predictor has low importion indices are similar for both the GAM-RF and the SVM-SVM
tance. According to Table 2, it is apparent that the wateryffuz combinations. Figure 10 shows the ISA images predictecgusin
region, the crisp image regions and the fuzzy-crisp imagens  the GAM-RF and the SVM-SVM techniques. It is apparent that
at 0.60 threshold are not very important in any of the two nimde these SVM estimates are qualitatively superior to thoseiobt
Conversely, the remaining fuzzy image regions seems to be inrusing the GAM-RF combination, and visually more appealing,
portant predictors. In particular, fuzzy image region urbaisp-  because SVM is able to better resolve the spectral confim@en
fuzzy image regions, and shape index of crisp image regimms a tween bare soil areas and impervious surface areas. As imoted
very important in the two models. Interestingly, the fuzegion ~ an earlier paper (Lizarazo, 2008), a main drawback of the SVM
bare soil is important for the 1990 model but is not for the®00 technique is that it provides little information about timepior-
model. This could be explained by the existence, in 1990, of 4ance of individual predictors.

bare soil zone which is spectrally similar to imperviousface. )

This zone is shown inside the red coloured circle in Figura)g (  1he FIRME method can be extended easily to accommodate the
(c), and (). Apart from such difference, it seems that theoim e_stlmatlon of other land cover surface areas as ne_eded_ ina pa
tance values show low change between regression models. THicular study. Although the implementation reported irsthaper
fact suggests that tHacMSEvalues provide information useful Used a GAM & RF combination (and also a SVM & SVM com-

to understand, to some degree, what is happening insideea giv Pination), the method can be modi ed for any machine leagnin
RF regression model. technigue. The main advantages of the method are its siityplic

and transferability. The only particular requirement of thzzy
image regions method (FIRME) is the collection of accurates
5 DISCUSSION ples to train the two regression tasks involved in the method

The degree of agreement between the impervious surface ar&esults from this experiment show that the FIRME approaeh is
(ISA) values predicted and the actual ISA data (i.e. theguou suitable alternative for quantitative land cover estimatiCom-
reference data) covering the study area may be considered pared with much more established techniques (Clapham,,2005



Table 1: Comparison between the fuzzy image regions methiBIME) and the direct regression method (DIRECT) for olbitajn
impervious surface areas. Training sample is 2000 pixaisa&rror was calculated as the ratio between predictechackactual area.

Test correlation coef cient  95% con dence interval ~ Areaa@r(%)

ISA 1990

FIRME 0.71 [0.695, 0.716] +7.3
DIRECT 0.69 [0.688, 0.703] +21.2
ISA 2000

FIRME 0.75 [0.738, 0.765] +6.1
DIRECT 0.73 [0.715, 0.748] +22.9
CHANGE

FUZZY 0.494 [0.481,0.503] +10.1
DIRECT 0.393 [0.381,0.405] +33.8

Change

(@ (b)

Figure 9: Change on impervious surface area (ISA) values 1890 to 2000: (a) as predicted using the FIRME method (GAM-R
techniques), (b) as represented in the ground referenae dat

Table 2: Importance of predictor variables (measured aBI8t€ value) using the fuzzy segmentation approach and amplyie
combination GAM-RF. Sample size comprises of 2000 pixeigregstands for image region.

Predictor ISA 1990 Model  ISA 2000 Model

Fuzzy imgreg water 8.75 5.86
Fuzzy imgreg urban 34.13 27.26
Fuzzy imgreg grass 24.77 15.07
Fuzzy imgreg trees 23.21 31.11
Fuzzy imgreg bare soil 24.86 14.53
crisp imgreg 14.11 13.20
crisp-fuzzy imgreg 31.72 34.71
confusion index 20.74 33.14
entropy index 38.67 40.24
fuzzy-crisp imgreg at 0.60 15.47 11.67
mean of TM-4 at crisp imgreg 28.23 20.56
mean of TM-3 at crisp imgreg 21.17 20.43
mean of TM-1 at crisp imgreg 24.31 17.64

shape index of crisp imgreg 27.91 30.73
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Figure 10: ISA prediction using the fuzzy segmentation epph: (a) GAM-RF, (b) SVM-SVM, (c) Reference data.

Table 3: Comparison between two machine learning techeidoieestimation of impervious surface areas using the fuamge
regions method (FIRME). Training sample is 2000 pixels. aAeeror was calculated as the increase (+) or decrease (@gsures in
percentage, between predicted area and reference area.

Test Correlation index  95% con dence interval  Area erro) (%

ISA 1990

GAM-RF 0.76 [0.763, 0.766] +7.3
SVM-SVM 0.75 [0.748, 0.756] +7.6

ISA 2000

GAM-RF 0.80 [0.798, 0.804] +6.1
SVM-SVM 0.79 [0.784, 0.795] +7.5
CHANGE

GAM-RF 0.494 [0.481,0.503 ] +10.1

SVM-SVM 0.509 [0.503,0.514 ] +11.2
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dependent on manual procedures such as visual interpretzfti  show change in_an urbanizing watershed. Internationalndour
of land cover classes, visual-screening, or land cover imgsk of Remote Sensing 26(22), pp. 4923-4939.

Unlike those approaches, the fuzzy segmentation appraach r S
quires a relatively low number of training samples. Accyrac \E/)Vglda'lRt" Hart, P. and Stork, D., 2001. Pattern Classi catio
of impervious surface area values obtained using FIRME exre a ey Interscience.

ceptable for most practical purposes. However, as thisracgu Fisher, P. and Arnot, C., 2007. Geographic Uncertainty iwi-€n

was obtained using ground reference data obtained by (8antz ronmental Security. Springer, chapter Mapping Type 2 Chang
al., 2005), and, an independent validation sample was r@kav Fuzzy Land Cover, pp. 167—186.

able, it was not possible to draw conclusions about theivelat
performance between the fuzzy segmentation approach and thFisher, P., Arnot, C., Wadsworth, R. and Wellens, J., 2006: D

method in terms of thematic accuracy. tecting change in vague interpretations of landscapedo#ical
Informatics 1, pp. 163-178.

6 CONCLUSIONS Foody, G. M. and Mathur, A., 2004. A relative evaluation of
multiclass image classi cation by support vector machinEE€E
This paper devised and tested a method for quantitativedever ~ Transactions on Geoscience and Remote Sensing 42, pp. 1336—
mapping using fuzzy image regions. It was shown how importan1343.

are fuzzy image regions as predictors of quantitative \abiién- Gislason. P. O., Benediktsson. J. A. and Sveinsson, J. BG. 20

pervious surfaces. It was demonstrated that fuzzy imagemnsg L "
N ) . . Random Forests for land cover classi cation. Pattern Reitimm
hold a potential richness of information which can help wuee Letters 27(4), pp. 294-300.

spectral confusion between land cover classes.

Goetz, S. J. and Jantz, P., 2006. Satellite Maps Show Cledeape

Experimental results show that GAM-RF based fuzzy image regy jrhan Development. EOS Transactions American Geophys-
gions provide more accurate estimation of impervious serfa jca] Union 87(15), pp. 149-156.

areas than a direct RF regression method. The GAM and RF

techniques provide similar accuracies than the SVM regess Gonzalez, R., 2008. Digital Image Processing. Third ediédn,
and are computationally affordable for processing larda dats.  Prentice Hall.

While the FIRME method is highly dependent on accurate train . .
ing samples, it is simple to use and may be used to obtairptelia Hall; E. H., 1979. Computer Image Processing and Recognitio
estimates of ISA values and urbanization changes. Academic Press.

Hastie, T., Tibshirani, R. and Friedman, J., 2009. The Elgme

of Statistical Learning: Data Mining, Inference and Prédit
Springer.

This study suggests that fuzzy segmentation is a usefulefram
work for conducting compositional land cover classi catioAs
guantitative classi cation is not a very common task in GEO-

BIA, the FIRME method shows a great potential for moving ge-Hay, G. J. and Blaschke, T., 2010. Special issue: Geographic
ographic object-based image analysis beyong its curramido  gbject-base image analysis. Photogrammetric Engineé&riRg-
aries. It can be stated therefore that fuzzy image regioyoa ~ mote Sensing 76(2), pp. 121-122.

tribute to bridge the gap between the traditional quaniaand
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International Journal of Remote Sensing 23, pp. 725-749.
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