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ABSTRACT:

Fuzzy Image Regions were proposed recently as an alternative GEOBIA method for conducting qualitative land cover classi�cation.
In this paper, these fuzzy segments are applied for estimation of quantitative (i.e. compositional) land cover. The method comprises
three main stages: (i) fuzzy segmentation to create segments with indeterminate boundaries and uncertain thematic allocation; (ii)
feature analysis to evaluate contextual properties of fuzzy image regions; and (iii) �nal regression to estimate compositional land cover.
The method is implemented using advanced machine learning techniques and tested in a rapidly urbanizing area using Landsat multi-
spectral imagery. Experimental results suggest that the method produces accurate sub-pixel characterization of landcover classes.
Thus, the proposed method is potentially useful for bridging the gap between the traditional quantitative and qualitative perspectives of
remote sensing image analysis.

1 INTRODUCTION

Signi�cant research in geographic object-based image analysis
(GEOBIA) aims to improve qualitative classi�cation of remotely
sensed imagery. Such a trend can be noticed in recent peer-
reviewed GEOBIA related journals (Hay and Blaschke, 2010).
A large percentage of most recent articles focus on evaluating ad-
vantages of GEOBIA classi�cations over traditional pixel-based
classi�cations, see, for example, (Johansen et al., 2010, Kim et
al., 2010, Lizarazo and Barros, 2010). GEOBIA classi�cations
are esentially qualitative classi�cations of land cover, which allo-
cate discrete labels to pixels. This classi�cation type hasdemon-
strated to be useful in different applications including thematic
mapping and change detection in rural and urban environments
(Jensen, 2005).

In contrast to qualitative land cover classi�cation, whichallocates
discrete class labels to pixels, a quantitative land cover classi-
�cation assigns continuous values expressing class composition
percentages (Clapham, 2005). As quantitative classi�cations es-
timate sub-pixel land cover classes, they may be, in many cases,
much more useful than qualitative classi�cations. In addition, a
quantitative classi�cation seems to be an appealing way to repre-
sent the spectral hetereogeneity within land cover classespresent
in imagery at several spatial resolutions (Fisher and Arnot, 2007).
Examples of successful application of quantitative classi�cation
of land cover include urbanization monitoring in urban and sub-
urban watersheds (Clapham, 2005, Goetz and Jantz, 2006).

Impervious surfaces is an indicator of the degree of urbaniza-
tion as well as a major indicator of environmental quality (Arnold
and Gibbons, 1996). Impervious surfaces are anthropogenicfea-
tures through which water cannot in�ltrate into the soil, such as
roads, driveways, sidewalks, parking lots, and rooftops (Weng,
2007). Digital extraction of impervious surfaces from medium
spatial resolution images has been demonstrated dif�cult due to
the mixed pixel problem (Clapham, 2005). Current approaches
for impervious surfaces mapping make use of automated mask-
ing, visual interpretation and pixel-based regression algorithms
(Clapham, 2005, Jantz et al., 2005). Such approaches produce

very accurate results but they are labour intensive and timecon-
suming methods (Lizarazo, 2010).

This paper explores the potential of Fuzzy Image Regions Method
(FIRME) for quantitative classi�cation of land cover. FIRME
was recently proposed as a new GEOBIA method for qualitative
classi�cation of urban land cover (Lizarazo and Barros, 2010).
Fuzzy image regions are image objects with indeterminate bound-
aries and uncertain thematic content. These image regions rep-
resent a much more general concept than the crisp image objects
traditionally used in GEOBIA. In this paper, the FIRME approach
is applied for estimation of impervious surface areas (ISA). This
works aims to determine whether the inclusion of several spatial
and spectral properties of fuzzy image regions contributesto im-
prove the estimation of ISA values.

2 DATA

The study area is a small watershed located in Montgomery County,
Maryland, USA. Impervious surface mapping is based on two
Landsat Thematic Mapper (TM) images from 1990 and 2000 re-
spectively: Landsat 5-TM of 3 May 1990, and Landsat 5-TM of
8 May 2000. These Landsat images correspond to the world ref-
erence system (WRS) path 15, row 33. These images, available
from the USGS Earth Resources Observation and Science Center
website (http://glovis.usgs.gov), include seven spectral bands as
follows:

Band 1: 450 - 520 nm (Blue).
Band 2: 520 - 600 nm (Green).
Band 3: 630 - 690 nm (Red).
Band 4: 760 - 900 nm (Near infrared).
Band 5: 1550 - 1750 nm (Mid-Infrared).
Band 6: 10400 - 12500 nm (Thermal infrared).
Band 7: 2080 - 2350 nm (Mid-infrared).

Of the two Landsat TM images used, the thermal band (band 6)
was excluded prior to impervious surface estimation due to its
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Figure 1: True color composition of two dates of Landsat images of the study area: (a) RGB321 of Landsat-TM 1990, and (b) RGB321
of Landsat-TM 2000.

(a) (b) (c)

Figure 2: Impervious surface area (ISA) maps for the study area produced by WHRC: (a) ISA 1990, (b) ISA 2000, (c) Urban develop-
ment between 1990 and 2000. These maps are used in this experiment as ground reference.

coarse spatial resolution. The six remaining bands are provided
in a UTM WGS 84 projection with pixel size of 28.5 meters at
50 meters RMSE absolute positional accuracy. The experimen-
tal area covers 655 x 560 pixels (aprox. 297.93km 2) over the
towns of Germantown and Gaithersburg. Figures 1 (a) and (b)
show true colour compositions of theses images which are Land-
sat L1G products, i.e. radiometrically and geometrically cor-
rected images with radiance pixel values scaled to byte values.
Due to brightness differences, the increase that occurred in de-
veloped land between the two dates is not completely apparent
(urbanization correspond roughly to the white and grey coloured
areas). The study area was selected because of the availability
of very accurate information on impervious surfaces for thetime
period under consideration (Jantz et al., 2005).

The impervious surface information was available from an ex-
tensive study on urbanization in the Chesapeake Bay Watershed,
where (Jantz et al., 2005) obtained accurate impervious surface
areas (ISA) maps at 30 m spatial resolution for 1990 and 2000.
These maps represent impervious surfaces (roofs, streets,side-
walks, etc) as acontinuousvariable, with values ranging from
0% (no impervious) to 100% (completely impervious). The study
also produced an accurate analysis of change, using both auto-
mated and manual (visual-screening) techniques, and also bare
soil areas masking.

These impervious surface area (ISA) maps are publicly avail-
able from the Woods Hole Research Center (WHRC). These ISA
maps, along the image corresponding to the amount and loca-
tion of change in the built environment, between 1990 and 2000,
are shown in Figure 2. In addition to this, qualitative land cover
maps for the same dates are available from the mid-Atlantic Re-
gional Earth Science Applications Center (MA-RESAC) (Jantz

et al., 2005). These thematic maps represent �ve land cover cate-
gories: water, urban, grass, trees and bare soil. In this study, both
ISA and qualitative thematic maps were used as ground refer-
ence for training sample collection and accuracy evaluation. The
qualitative land cover maps are used here to get the labeled train-
ing samples required to produce one fuzzy image region per land
cover class. Then, the ISA maps are used to get the quantitative
training samples required to infer quantitative impervious surface
area values.

3 METHODS

Figure 3 shows the image analysis work�ow for estimating im-
pervious surface area using the FIRME approach. Similarly to the
procedure proposed for qualitative classi�cation (Lizarazo and
Barros, 2010), it involves three main stages: (i) fuzzy segmen-
tation; (ii) feature analysis; and (iii) defuzzi�cation (i.e. regres-
sion). The main difference here is that, in the case of quantitative
classi�cation, the �nal result is a continuous value representing
compositional land cover (i.e. imperviousness) rather than a dis-
crete land cover class label. Therefore, the last stage is not a
classi�cation task but aregressiontask. For a detailed explana-
tion of the different types of fuzzy image regions, a review of the
FIRME approach (Lizarazo and Barros, 2010) is suggested.

3.1 FIRME Segmentation

Before starting this stage the two Landsat-TM images were nor-
malized radiometrically to reduce the effect of brightnessdiffer-
ences. For such a task, thehistogram matchingtechnique (Jensen,
2005) was used tomatchthe intensities of the six channels of the
2000 scene to the 'standard' 1990 scene.
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Figure 3: Sequence of stages used for quantitative classi�cation in the FIRME approach: (1) Fuzzy segmentation, (2) Feature Analysis,
and (3) Regression.



For thefuzzy segmentationstage, a supervised Generalized Addi-
tive Model (GAM) regression technique was used. A generalized
additive model (GAM) is a special case of a generalized linear
model (GLM) in which part of the linear predictor is speci�edin
terms of a sum of smooth functions of predictor variables. The
exact parametric form of these functions is unknown as is thede-
gree of smoothness appropriate for each of them (Wood, 2006).
While general linear models emphasize the estimation and infer-
ence for the model parameters, GAM focuses on exploring data
non-parametrically. The strength of GAM is its ability to deal
with highly non-linear and non-monotonic relationships between
the response variable and a set of explanatory variables (Hastie et
al., 2009). In general, a GAM model can be expressed as:

Y = S0 +
X

Sk (X k ) + � k (1)

whereS0 is the intercept,Sk (X k ) is a non-parametric smoothing
function for thek th independent variableX (k = 1 ; 2; :::; p), and
� k are independent and identically distributed (i.i.d.)N (0; � 2)
random variables. The only underlying assumption is that the
smoothing functions in GAM are additive.

GAM models have been applied in remote sensing studies related
to stochastic simulation of land cover change (Brown et al.,2002)
and model-assisted estimation of forest resources (Opsomer et al.,
2007).

The supervised GAM regression model was �tted usingland cover
membershipsas dependent (response) variable and sixnormal-
izedbands as predictor variables. The GAM technique was ap-
plied to create individual regression models from categorical train-
ing samples randomly sampled from the available land cover maps.
For creating each regression model, the GAM technique was ap-
plied using the one-against-all technique (Hastie et al., 2009).
A random sample of 1000 pixels was used to obtain training
pixels for each land cover. Training samples were assigned ei-
ther100 (full membership) or0 (null membership) to each land
cover. Once individual predictions were undertaken for every
land cover, a sum-to-one constraint was applied to membership
values to interpret fuzzy image regions as compositional classes.

This stage produced �ve fuzzy-fuzzy image regions:water, ur-
ban, grass, treesandsoil, which are shown in Figure 4. Then,
these fuzzy-fuzzy image regions were transformed into three new
images: (i) crisp image regions, (ii) crisp-fuzzy image regions,
and (iii) fuzzy-crisp image regions (using membership values of
0.60 as threshold). These image regions are depicted in Figure 5.

The crisp imageC was obtained using a logical union operator
referred to as the fuzzy t-conorm MAX operator (Ross, 2004),
and de�ned as follows:

C = � i 1U� i 2 : : : U� ic = max (� i 1 ; � i 2 ; : : : ; � i 3) (2)

wheremax () indicates the largest membership value of thei th

pixel or neighborhood. Then, contiguous pixels belonging to the
same class were clumped and sieved.

The crisp-fuzzy (CF) image was obtained by keeping the bound-
ary of crisp image regions and replacing their interior values (i.e.
the largest membership value) with the original membershipval-
ues at each fuzzy image region. Finally, the fuzzy-crip image
(FC) was created by the union of a crisp interior (de�ned by
using the 0.60 membership value as threshold) and the condi-
tional boundary represented by the confusion index (referred to
as CI, and explained in the next section) using the followingstate-
ment: IFMAX > = 0 :60, THEN F C = MAX , OTHERWISE
F C = CI .

3.2 Feature Analysis

The feature analysisstage aims to identify spatial and spectral
properties of fuzzy image regions. Contextual relationships be-
tween fuzzy image regions can be measured to uncover poten-
tial underlying structural information. In addition, geometric and
spectral properties of fuzzy image regions can provide clues to
resolve spectral confusion between land cover classes.

Contextual relationships were evaluated using the confusion in-
dex (CI ) (Burrough et al., 1997):

CI = 1 �
�
� maxi � � ( max � 1) i

�
: (3)

where� maxi and� ( max � 1) i are, respectively, the �rst and sec-
ond largest membership value of thei th pixel. TheCI measures
the overlapping of fuzzy classes at any point and provides insight
for further investigating the sites with high membership values to
more than one class (Bragato, 2004).CI values are in the range
[0; 1], values closer to 1 describe zones where overlapping is crit-
ical.

In addition, the information entropy (H) was evaluated at each
pixel of the fuzzy image regions as follows (Gonzalez, 2008):

H = �
nX

i =1

p(x i ) log p(x i ) (4)

wherep(x i ) is the probability for each digital number (or in-
tensity level) in the image under consideration (obtained from a
histogram of the image intensities), andlog is the natural loga-
rithm with basee = 2 :718282. Then, the entropy of the full set
of fuzzy image regions was summarized using the entropy index
(ENTRO) (Gonzalez, 2008):

ENT RO =
mX

c=1

H i )=log(128)(5)

wherem is the number of fuzzy image regions (or land cover
classes of interest).

Mean values of spectral bands TM-1, TM-3 and TM-4 within
crisp image regions were evaluated as spectral indices. Finally, a
geometry attribute, representing the perimeter area ratiowas cal-
culated at every crisp image region. The feature analysis stage
therefore outputs three contextual indices per date, the confu-
sion index (CI), the entropy index (ENTRO), and the shape index
(SHAPE), and two spectral indices, MEAN B1 and MEAN-B2.
These indices are shown in Figures 6 and 7.

3.3 Regression

For the �nal regressionstage, the estimation of impervious sur-
face area within individual pixels was conducted using thirteen
predictors as follows:

1. fuzzy image regions water

2. fuzzy image region urban

3. fuzzy image region grass

4. fuzzy image region trees

5. crisp image regions,

6. crisp-fuzzy image regions,
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Figure 4: Fuzzy-fuzzy image regions obtained in the fuzzi�cation stage for the 1990 and 2000 dates. From top to botton: water, urban,
grass, trees and bare soil.
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Figure 5: Image regions derived in the fuzzi�cation stage for the 1990 and 2000 dates. From top to botton: crisp-fuzzy image regions,
crisp image regions, and fuzzy-crisp image regions with threshold at 0.60 membership.
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Figure 6: Contextual and spatial indices obtained from fuzzy image regions for the 1990 and 2000 dates: (a) confusion index, (b)
entropy, and (c) shape index.
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Figure 7: Spectral indices obtained from crisp image regions for the 1990 and 2000 dates: (a) mean of TM-1, (b) mean of TM-3, and
(c) mean of TM-4.



7. confusion index,

8. entropy index,

9. fuzzy crisp region at 60% threshold,

10. mean of band TM-4 within crisp image regions,

11. mean of band TM-3 within crisp image regions,

12. mean of band TM-1 within crisp image regions, and

13. shape index of crisp image regions.

A random forest (RF) technique was applied to create the im-
pervious regression model from training samples, this timeusing
training samples extracted from the ISA maps. A RF is a regres-
sor that builds not one but hundreds of decision trees and com-
bines its decisions using simple voting or advanced techniques
based on consensus theory (Hastie et al., 2009). The premiseis
that combining many trees is often more accurate than relying
on only one tree. A random forest is a collection of classi�ca-
tion and regressionn trees (CART) following speci�c rules for:
(i) tree growing, (ii) tree combination, (iii) self-testing, and (iv)
post-processing. Each tree is grown at least partially at random:
randomness is injected by growing each tree on a different ran-
dom subsample of the training data. This technique, useful to
create new training sets, is referred to as the bagging technique
(or bootstrap aggregating). Each tree is grown on about 63% of
the original training data (due to the bootstrap sampling process).
Thus, the 37% of the training data is available to test any sin-
gle tree. This left out data is the 'out of bag' (OOB) which al-
lows calibration of the performance of each tree. RF have been
explored for per-pixel land cover classi�cation and experimental
results suggest it is computationally more e�cient and moreaccu-
rate than other methods such as arti�cial neural networks (ANN)
(Pal and Mather, 2003, Gislason et al., 2006).

The RF technique was selected due to its good performance for
regression tasks in remote sensing (Walton, 2008). For creating
the regression model, the RF settings were setup using default
parameters as follows:

� number of trees = 500,

� number of variables to try at every split = 3.

As a �nal step, an evaluation of the accuracy of impervious sur-
face mapping was conducted using the ground reference images.
For such a purpose the original ISA 1990 and 2000 maps (and
the urban development map), produced by WHRC at 30 m spa-
tial resolution, were subset and resampled to 28.5 meters tomatch
the window and pixel size of the Landsat-TM images of 28.5 m.
While this resampling degrades the quality of ground reference
data, it was considered a more preferable choice than coarsening
the pixel size of the Landsat images.

Direct comparison between the predicted and the ground refer-
ence ISA was conducted using the Pearson's correlation coef�-
cient (Hall, 1979). Area estimation of impervious surfacesin a
given image was calculated by taking the sum of all pixel mem-
bership values for the image under consideration (Fisher etal.,
2006).

Once the impervious surface areas were estimated, the subse-
quent task to be conducted was change analysis.LossandGain

estimation was conducted based on the predicted impervioussur-
faces, using a change matrix (as suggested by (Fisher et al.,2006)
for per-pixel fuzzy change analysis) to accommodate zones of No
ChangeandChange. The diagonal cells of the change matrix in-
dicatingno changehas occurred in a cover classCj between time
t1 and timet2 were obtained using the equation (Fisher et al.,
2006):

� (Cj [nochange ] ) = min (� (Cj [ t 1] ); � (Cj [ t 2] )) (6)

where min indicates the minimum operator (intersection) be-
tween fuzzy sets, i.e. the minimum value of the membership
values� (Cj [ ti ] ) to classCj for a given timet1 or t2.

Gain, the total area of classj which is gained, is given by the
areas which are not members of class(Cj ) at timet1, denoted as
� (: Cj [ t 1] ) and are members of class(Cj ) at timet2, denoted as
� (Cj [ t 2] ). Gain was calculated using the equation (Fisher et al.,
2006):

� (Cj [gain ] ) = max (0; � (: Cj [ t 1] ) + � (Cj [ t 2] ) � 1) (7)

where max indicates the maximum operator (union) between
fuzzy sets, i.e. the maximum value of each membership value
to a given class� (Cj ).

Loss, the total area of classj which is lost, is given by the areas
which are members of class(Cj ) at timet1, denoted as� (Cj [ t 1] ),
and are not members of class(Cj ) at timet2, denoted as� (: Cj [ t 2] ).
Loss was calculated using the equation (Fisher et al., 2006):

� (Cj [ loss ]) = max (0; � (Cj [ t 1] ) + � (: Cj [ t 2] ) � 1) (8)

The off-diagonal cells representing change in the change matrix
were calculated as the intersection of the gain in classCj and
the loss in classCk over the intervalt1 to t2 using the equation
(Fisher et al., 2006):

� (Cj [change ] ) = min (� (Cj [gain ] ); � (Ck [loss ])) (9)

All the processes for quantitative classi�cation were implemented
by usingR (Team, 2008) andSAGAGIS (). Besides theR
base package, the following libraries were used to develop the
method: rgdal , sp, spatstats , maptools, RSAGA , gam and
randomF orest .

4 RESULTS

Figures 8 (a) and (b) show the impervious surface areas (ISA)
maps in 1990 and 2000 as predicted using the FIRME approach
with a random sample of 2000 pixels which represent 0.54 % of
the study area.

The Pearson's correlation coef�cient (Hall, 1979) betweenthe
predicted ISA images and the ground reference images, shown
in Figures 8 (c) and (d), are0:76 and0:81 respectively. It is a
good approximation to the real impervious surface, and minor
misprediction problems are detected only after a careful visual
assessment. As Table 1 shows, GAM-RF based fuzzy segmenta-
tion overestimates impervious surface by 7.3% and 6.1% respec-
tively. Table 1 also shows that the correlation coef�cient between
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Figure 8: Impervious surface area (ISA) maps for the study area using: (a) FIRME method 1990, (b) FIRME method 2000, (c)
Reference data 1990, (d) Reference data 2000, (e) DIRECT method 1990, and (f) DIRECT method 2000.



the ISA change predicted by the FIRME method and the actual
change is0:49. The fuzzy segmentation method overestimates
ISA change by 10.13%.

As this study aimed at analyzing the contribution of fuzzy image
region to increasing the accuracy of the ISA estimation, a direct
regression was tested. A direct regression uses the SVM tech-
nique for estimation of impervious surface area values directly
from the normalized spectral bands. In this option, the fuzzy seg-
mentation and feature analysis stages are omitted, and the esti-
mation relies only on a reliable quantitative training sample, and
on the predictive power of SVM. Figures 8 (e) and (f) show the
ISA maps obtained using direct regression (DIRECT). In Figure
8 red coloured circles at each ISA map highlight zones of ma-
jor misprediction where bare soil zones are taken as impervious
surfaces. Table 1 also presents the results obtained using the di-
rect regression option. It is apparent that the fuzzy segmentation
method outperforms the DIRECT method. Note that, for indi-
vidual dates, the area error using the FIRME method is about 3
times lower than the area error using the DIRECT method. With
regard to change in ISA values, the FIRME METHOD is about
three times more accurate than the DIRECT method.

Figure 9 (a) shows the predicted change on impervious surface
area (ISA) values from 1990 to 2000 using the FIRME method
with training sample size of 2000 pixels. Figure 9 (b) shows the
urban development reference data (Jantz et al., 2005). Figure 9
shows that, using the proposed method, a general overestimation
occurs over the whole study area. As Table 1 shows, the FIRME
method overestimates urban development surface by 13%.

Table 2 shows, on the other hand, the relative importance of each
predictor variable to create the Random Forest (RF) regression
model for estimating impervious surface at the �nal regression
stage. Although RF needs manual parameterisation, its results
do not change too much depending on the values assigned to the
number of trees or on the number of variables tried at every split.
The importance of predictor variables in RF is reported using the
IncMSEvalue. This means that, for each tree, the prediction ac-
curacy is calculatedwith andwithout each predictor variable us-
ing themean squared error. Then, the differences in accuracy are
averaged over all trees and normalized by the standard error. If
the standard error is equal to0 for a given variable, the division
is not done but the reported value is0. In short, a low value of
IncMSEmeans that the corresponding predictor has low impor-
tance. According to Table 2, it is apparent that the water fuzzy
region, the crisp image regions and the fuzzy-crisp image regions
at 0.60 threshold are not very important in any of the two models.
Conversely, the remaining fuzzy image regions seems to be im-
portant predictors. In particular, fuzzy image region urban, crisp-
fuzzy image regions, and shape index of crisp image regions are
very important in the two models. Interestingly, the fuzzy region
bare soil is important for the 1990 model but is not for the 2000
model. This could be explained by the existence, in 1990, of a
bare soil zone which is spectrally similar to impervious surface.
This zone is shown inside the red coloured circle in Figure 8 (a),
(c), and (e). Apart from such difference, it seems that the impor-
tance values show low change between regression models. This
fact suggests that theIncMSEvalues provide information useful
to understand, to some degree, what is happening inside a given
RF regression model.

5 DISCUSSION

The degree of agreement between the impervious surface area
(ISA) values predicted and the actual ISA data (i.e. the ground
reference data) covering the study area may be considered as

good for a range of environmental studies. The proposed method
may be used as a rapid means for quantitative classi�cation and
change estimation. However, additional re�ning of resultsusing
ground data may be necessary for resolving eventual inaccura-
cies.

For comparison purposes, an additional test was conducted in this
experiment to estimate how sensitive the fuzzy segmentation ap-
proach is to the algorithm used for the fuzzi�cation, and respec-
tively, defuzzi�cation stage. In the test, the same procedure ex-
plained earlier was applied but using the support vector machine
(SVM) technique (i.e. SVM was applied for both fuzzi�cation
and defuzzi�cation) instead of the GAM-RF combination.

SVM is a widely used machine learning method for per-pixel im-
age classi�cation (Foody and Mathur, 2004, Huang et al., 2002,
Zhu and Blumberg, 2002). SVM transforms the input data set
into a higher-dimensional space using special functions called
kernels. SVM uses thestructural risk minimisation(SRM) prin-
ciple to �nd a separating hyperplane which minimizes the margin
between two classes (Duda et al., 2001).

The SVM approach for solving the two classes problem can be
extended to multiclassi�cation tasks (Duda et al., 2001). More-
over, the SVM technique can be also applied to regression prob-
lems. In SVM regression, the goal is to �nd a functionf (x) that
has at most a given deviation, referred to as� , from the actually
obtained targetsyi for all the training data, and at the same time
is as �at as possible. In other words, errors, i.e. the differences
betweenyi andf (x), are not important as long as they are less
than� , but will not be accepted if they are larger than this (Smola
and Scholkopf, 2003).

Kernel functions commonly used in SVM are: (i) polynomial, (ii)
radial basis function, and (iii) sigmoid. SVM requires onlysmall
training samples to �t the classi�cation or regression model. Also,
while SVM parameterisation is considered to be a complex issue,
it can be solved using automatic procedures (Smola and Scholkopf,
2003).

Table 3 shows the performance of the method when applying
SVM, using a radial basis function and an automated parameter-
isation strategy (Lizarazo, 2008), in order to estimate urbaniza-
tion changes. It can be noted that area error values and correla-
tion indices are similar for both the GAM-RF and the SVM-SVM
combinations. Figure 10 shows the ISA images predicted using
the GAM-RF and the SVM-SVM techniques. It is apparent that
these SVM estimates are qualitatively superior to those obtained
using the GAM-RF combination, and visually more appealing,
because SVM is able to better resolve the spectral confusionbe-
tween bare soil areas and impervious surface areas. As notedin
an earlier paper (Lizarazo, 2008), a main drawback of the SVM
technique is that it provides little information about the impor-
tance of individual predictors.

The FIRME method can be extended easily to accommodate the
estimation of other land cover surface areas as needed in a par-
ticular study. Although the implementation reported in this paper
used a GAM & RF combination (and also a SVM & SVM com-
bination), the method can be modi�ed for any machine learning
technique. The main advantages of the method are its simplicity
and transferability. The only particular requirement of the fuzzy
image regions method (FIRME) is the collection of accurate sam-
ples to train the two regression tasks involved in the method.

Results from this experiment show that the FIRME approach isa
suitable alternative for quantitative land cover estimation. Com-
pared with much more established techniques (Clapham, 2005,



Table 1: Comparison between the fuzzy image regions method (FIRME) and the direct regression method (DIRECT) for obtaining
impervious surface areas. Training sample is 2000 pixels. Area error was calculated as the ratio between predicted areaand actual area.

Test correlation coef�cient 95% con�dence interval Area error (%)
ISA 1990
FIRME 0.71 [ 0.695, 0.716] + 7.3

DIRECT 0.69 [ 0.688, 0.703] + 21.2
ISA 2000
FIRME 0.75 [ 0.738, 0.765] + 6.1

DIRECT 0.73 [0.715, 0.748] + 22.9
CHANGE
FUZZY 0.494 [ 0.481 , 0.503 ] + 10.1
DIRECT 0.393 [ 0.381 , 0.405 ] + 33.8

(a) (b)

Change

Figure 9: Change on impervious surface area (ISA) values from 1990 to 2000: (a) as predicted using the FIRME method (GAM-RF
techniques), (b) as represented in the ground reference data.

Table 2: Importance of predictor variables (measured as IncMSE value) using the fuzzy segmentation approach and applying the
combination GAM-RF. Sample size comprises of 2000 pixels.imgregstands for image region.

Predictor ISA 1990 Model ISA 2000 Model
Fuzzy imgreg water 8.75 5.86
Fuzzy imgreg urban 34.13 27.26
Fuzzy imgreg grass 24.77 15.07
Fuzzy imgreg trees 23.21 31.11

Fuzzy imgreg bare soil 24.86 14.53
crisp imgreg 14.11 13.20

crisp-fuzzy imgreg 31.72 34.71
confusion index 29.74 33.14
entropy index 38.67 40.24

fuzzy-crisp imgreg at 0.60 15.47 11.67
mean of TM-4 at crisp imgreg 28.23 20.56
mean of TM-3 at crisp imgreg 21.17 20.43
mean of TM-1 at crisp imgreg 24.31 17.64
shape index of crisp imgreg 27.91 30.73
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Figure 10: ISA prediction using the fuzzy segmentation approach: (a) GAM-RF, (b) SVM-SVM, (c) Reference data.

Table 3: Comparison between two machine learning techniques for estimation of impervious surface areas using the fuzzyimage
regions method (FIRME). Training sample is 2000 pixels. Area error was calculated as the increase (+) or decrease (-), measured in
percentage, between predicted area and reference area.

Test Correlation index 95% con�dence interval Area error (%)
ISA 1990
GAM-RF 0.76 [ 0.763, 0.766] +7.3

SVM-SVM 0.75 [ 0.748, 0.756] +7.6
ISA 2000
GAM-RF 0.80 [ 0.798, 0.804] +6.1

SVM-SVM 0.79 [ 0.784, 0.795] +7.5
CHANGE
GAM-RF 0.494 [ 0.481 , 0.503 ] +10.1

SVM-SVM 0.509 [ 0.503 , 0.514 ] +11.2



Jantz et al., 2005), it is much more simple to apply, and it is less
dependent on manual procedures such as visual interpretation of
of land cover classes, visual-screening, or land cover masking.
Unlike those approaches, the fuzzy segmentation approach re-
quires a relatively low number of training samples. Accuracy
of impervious surface area values obtained using FIRME are ac-
ceptable for most practical purposes. However, as this accuracy
was obtained using ground reference data obtained by (Jantzet
al., 2005), and, an independent validation sample was not avail-
able, it was not possible to draw conclusions about the relative
performance between the fuzzy segmentation approach and that
method in terms of thematic accuracy.

6 CONCLUSIONS

This paper devised and tested a method for quantitative landcover
mapping using fuzzy image regions. It was shown how important
are fuzzy image regions as predictors of quantitative values of im-
pervious surfaces. It was demonstrated that fuzzy image regions
hold a potential richness of information which can help to reduce
spectral confusion between land cover classes.

Experimental results show that GAM-RF based fuzzy image re-
gions provide more accurate estimation of impervious surface
areas than a direct RF regression method. The GAM and RF
techniques provide similar accuracies than the SVM regression
and are computationally affordable for processing large data sets.
While the FIRME method is highly dependent on accurate train-
ing samples, it is simple to use and may be used to obtain reliable
estimates of ISA values and urbanization changes.

This study suggests that fuzzy segmentation is a useful frame-
work for conducting compositional land cover classi�cation. As
quantitative classi�cation is not a very common task in GEO-
BIA, the FIRME method shows a great potential for moving ge-
ographic object-based image analysis beyong its current bound-
aries. It can be stated therefore that fuzzy image regions may con-
tribute to bridge the gap between the traditional quantitative and
qualitative perspectives of remote sensing image analysiswhich
are often seen as two different and independent worlds .
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